SLAM: Scalable Locality-Aware Middleware for I/O in
Scientific Analysis and Visualization

Jiangling Yin, Jun Wang, Xuhong Zhang,
Junyao Zhang
EECS, University of Central Florida
Orlando, Florida 32826

{iyin,jwang,xzhang,Junyao} @ eecs.ucf.edu

ABSTRACT

Whereas traditional scientific applications are computation-
ally intensive, recent applications require more data-intensive
analysis and visualization. As the computational power and
size of compute clusters continue to increase, the I/O read
rates and associated network cost for these data-intensive
applications create a serious performance bottleneck when
faced with the massive data sets of today’s “big data” era.

In this paper, we present “Scalable Locality-Aware Mid-
dleware” (SLAM) for scientific data analysis applications.
SLAM leverages a distributed file system (DFS) to provide
scalable data access for scientific applications. To reduce
data movement and enforce data-process locality, a data-
centric scheduler (DC-scheduler) is proposed to enable sci-
entific applications to read data locally from a DFS. We pro-
totype our proposed SLAM system along with the Hadoop
distributed file system (HDFS) on two well-known scientific
applications. We find in our experiments that SLAM can
greatly reduce I/O cost and double the overall performance,
as compared to existing approaches.

Keywords
MPI/POSIX I/O; HDFS; Parallel BLAST; ParaView

1. INTRODUCTION

Modern technological advances have led to scientific in-
struments and computer simulations that create or collect
extremely large and diverse datasets. To readily analyze and
interpret this data, many scientific analysis/visualization ap-
plications have been designed. For instance, gene analysis
tools such as parallel BLAST have been developed to help
researchers to better understand the functionality of bio-
logical entities and processes [5]. Also, visualization appli-
cations such as ParaView [1] can interpret and graphically
represent raw simulation /scientific data. These applications
are developed with MPI programming model, in which the
shared dataset is stored in a network accessible storage sys-
tem like NF'S, PVFS, or Lustre, and transferred to a parallel
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HPDC’14, June 23-27, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2749-7/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600212.2600709.

Wu-chun Feng
Department of Computer Science
Virginia Tech
Virginia Tech, Blacksburg, VA 2406
wfeng@vt.edu

MPI process during execution. However, in today’s big da-
ta era, rapidly growing data sets are too heavyweight to be
moved efficiently over the network due to limited resources.

Distributed file systems, constructed from machines with
locally attached disks, can scale with the problem size and
number of nodes as needed. For instance, the Hadoop sys-
tem employs a DFS for MapReduce applications and allows
map tasks to access data locally. As the number of cluster n-
odes increases, the Hadoop system can scale-out, expanding
storage and launching MapReduce tasks on the additional
nodes. Compared to the MPI programming model, however,
the MapReduce programming model lacks the flexibility and
efficiency to implement the complex algorithms executed in
scientific applications such as parallel BLAST [5], FLASH
physics, or visualization applications.

In this paper, we propose “Scalable Locality-Aware Mid-
dleware” (SLAM), which allows scientific analysis applica-
tions to benefit from data-locality exploitation with the use
of HDF'S, while also maintaining the flexibility and efficiency
of the MPI programming model. SLAM employs a process-
to-data mapping scheduler (DC-scheduler) to transform a
compute-centric mapping into a data-centric one so that a
computational process always accesses data from a local or
nearby computation node. We realize a SLAM prototype
system using mpiBLAST and ParaView to demonstrate the
efficiency of SLAM. In our work, SLAM runs on the Hadoop
distributed file system (HDF'S). Our experiments show that
the I/O cost of data movement is highly reduced when S-
LAM is incorporated.

2. SLAM DESIGN AND IMPLEMENTATION

The objective of SLAM is to allow scientific analysis pro-
grams to benefit from data locality exploitation in HDF'S.
Since the data is distributed in advance within HDFS, the
default task assignment may not allow parallel processes to
fully benefit from local data access without considering data
distribution. Thus, we need to intercept the original tasks
scheduled and re-assign the tasks so as to achieve maximum
efficiency on a parallel system with a high degree of data
locality and load balancing.

SLAM system consists of two important parts: a data
centric load-balanced scheduler called DC-scheduler and a
translation I/0 layer called SLAM-I/O. The DC-scheduler
determines which specific data fragment is assigned to each
node to process, thus minimizing the number of fragments
pulled over the network. The SLAM-I/O will allow parallel
MPI processes to directly access fragments treated as chunks

in HDFS from local hard drive, which is part of the entire
HDFS storage.

2.1 SLAM-I/O: A Translation Layer

Current scientific parallel applications are mainly devel-
oped with the MPI model, which employs either MPI or
POSIX-I/O to run on a network file system or a network-
attached parallel file system. SLAM uses HDFS to replace
these file systems, which entails handling the 1/O compati-
bility issues between MPI-based programs and HDFS.

We implement a translation layer, SLAM-1/0O, to handle
the incompatible I/O semantics. The basic idea is to trans-
parently transform high-level 1/O operations of parallel ap-
plications to standard HDFS I/O calls. We elaborate how
SLAM-I/O works as follows. SLAM-I/O first connects to
the HDF'S server using hdfsConnect() and mounts HDF'S as
a local directory at the corresponding compute node. Hence
each cluster node works as one client to HDFS. Any I/O op-
erations of parallel applications that work in the mounted di-
rectory are intercepted by the layer and redirected to HDF'S.
Finally, the correspondent hdfs I/O calls are triggered to ex-
ecute specific I/O functions e.g. open /read /write /close.

In the experiments to follow, we prototype SLAM-I/O
using FUSE, a framework for running stackable file systems
in a non-privileged mode. An I/O call from application to
Hadoop file system is illustrated in Figure 1. Firstly, the
Hadoop file system is mounted on all participating cluster
nodes through the SLAM-I/O layer. Then the I/O opera-
tions of scientific applications are passed through a virtual
file system (VFS), taken over by SLAM-1/0 through FUSE
and then forwarded to HDF'S.

MPI-1/O, FUSE lib
POSIX-1/O

: A Kernel

| VFs-system FUSE Kernel .

i P P i ~—
call) Module |] HDFS (=

Figure 1: The I/O call in our prototype. A FUSE
kernel module redirects file system calls from par-
allel I/O to SLAM-I/O. SLAM-I/O wraps HDFS
clients and translates the I/O call to DFS I/0.

2.2 A Data Centric Load-balanced Scheduler

Scalability and high performance in data intensive scien-
tific applications relies on data locality and load balance.
However, heterogeneity issues exist that could potentially
result in load imbalance. For instance, in parallel gene da-
ta processing, the global database is formatted into many
fragments, and the data processing job is divided into a list
of tasks corresponding to the database fragments. On the
other hand, HDF'S random chunk placement algorithm may
distribute database fragments unevenly within the cluster,
leaving some nodes with more data than others.

We implement a fragment location monitor as a back-
ground daemon to report unassigned fragment locations to
the DC-scheduler. At any point of time, DC-scheduler al-
ways tries to launch a local task of the requesting process,
that is, a task with its corresponding fragment available on
the node of the requesting process. In practice, a high degree

DC-Scheduler
(process id)

Location
Monitor

Data Set | 3| Read Filters /
Partition| |piace|[#| Render/
Data Composite

SLAM
-1/0 | |

Figure 2: Proposed SLAM for ParaView. The DC-
scheduler assigns data processing tasks to MPI pro-
cesses such that each MPI process could read the
needed data locally.

of data locality could often be achieved as each fragment has
three physical copies in HDFS, leaving three different node
candidates available for scheduling.

Upon an incoming data processing job, the DC-scheduler
invokes the location monitor to report the physical location
of all target fragments. If a process from a specific node
requests a task, the scheduler assigns a task to the process
using the following procedure. First, if local tasks exist on
the requesting node, the scheduler will evaluate which local
task should be assigned to the requesting process in order
to make other parallel processes achieve locality as much
as possible. Second, if no local task exists on the node,
the scheduler will assign a task to the requesting process
by comparing all unassigned tasks in order to make other
parallel processes achieve locality. The node will then pull
the corresponding fragment over the network.

Since mpiBLAST adopts a master-slave architecture, the
DC-scheduler could be directly incorporated into the master
process, which performs dynamic scheduling according to
which nodes are idle at any given time.

2.3 ParaView with SLAM

We show how SLAM is implemented in Paraview in this
section. ParaView employs reader modules on data server
processes to interpret data from files. To process a dataset,
the data servers running in parallel will call the reader to
read a meta-file, which points to a series of data files. Then,
each data server will compute a designated fragment of the
data assignment according to the number of data files, num-
ber of parallel servers, and server rank. Data servers will
read the data in parallel from the shared storage and then
filter /render.

In order to achieve locality computation for ParaView, the
default task assignments need to be intercepted to use our
proposed DC-scheduler to assign tasks for each data server
at run time. Specifically, we illustrate the SLAM framework
organization for ParaView in Figure 2.

Our proposed DC-scheduler strategy in Section 2.2 is very
suitable for applications with dynamic scheduling algorithm-
s, such as mpiBLAST, in which scheduling is determined by
which nodes are idle at any given time. However, since the
data assignment in ParaView uses a static data partition-
ing method, the work allocation is determined beforehand;
no process works as a central scheduler. For this kind of
scheduling, we adopt a round-robin request order for all data
servers. Until the task set is empty, the data server process
with a specific process ID can get all the data pieces as-
signed to it. The data servers will read the data in parallel
and then filter /render.

2000 1/0 Performance

\b

2000 /
1500

1000

[0
=}
S

i\

Aggregate Bandwidth (MB/sec)

0 20 40 60 80 100 120
Number of Nodes

~¢—=SLAM-based ——PVFS-based NFS-based

Figure 3: Read bandwidth comparison of NF'S,
PVFS and SLAM based BLAST schemes.

3. EXPERIMENTS AND ANALYSIS

3.1 Experimental Setup

We conducted comprehensive testing on our proposed mid-
dleware SLAM on Marmot. Marmot is a cluster of the
PRODBE on-site project [4] and housed at CMU in Pitts-
burgh. The system has 128 nodes / 256 cores and each node
in the cluster has dual 1.6GHz AMD Opteron processors,
16GB of memory, Gigabit Ethernet, and a 2TB Western
Digital SATA disk drive.

In our experiment, MPICH [1.4.1] is installed as paral-
lel programming framework on all compute nodes running
CENTOS55-64 with kernel 2.6. We chose Hadoop 0.20.203
as the distributed file system, which is configured as fol-
lows: one node for the NameNode/JobTracker, one node
for the secondary NameNode, and other compute nodes as
the DataNode/TaskTracker. For comparison to SLAM, we
run experiments with two conventional file systems—NFS
and PVFS2. We choose NFS as it is the default shared file
system on most clusters. Additionally, we installed PVFS2
version [2.8.2] with default setting on the cluster nodes.

3.2 [Evaluating Parallel BLAST with SLAM

To make comparison with the open source parallel BLAST,
we deploy mpiBLAST version [1.6.0] on all the nodes in the
clusters. Equipped with our SLAM-I/O layer at each cluster
node, HDF'S can be mounted as a local directory and used as
shared storage for parallel BLAST. BLAST itself can then
run on HDFS without recompilation. For clarity, we labeled
them as NFS-based, PVFS-based and SLAM-based BLAST.
During the experiments, we mount NFS, HDFS and PVF-
S2 as local file systems at each node if a BLAST process is
running on that node.

We select nucleotide sequence database nt as our exper-
imental database. The nt database contains the GenBank,
EMB L, D, and PDB sequences. At the time when we per-
formed experiments, the nt database contained 17,611,492
sequences with a total raw size of about 45 GB. The in-
put queries to search against the nt database are randomly
chosen from nt and revised, which guarantees that we find
some close matches in the database. We used the same in-
put query in all running cases and fixed the query size to be
50 KB with 100 sequences, which generated a same output
result in the amount of around 5.8 MB. The nt database
was partitioned into 200 fragments.

Improvement in Use of SLAM
70%
60%

= 50%
c

o
qE, 40% 4 NFS-based

>
2 30% - 1 PVFS-based
= 20%

10%

0% B

Number of Nodes

Figure 4: Performance gain of BLAST execution
time when searching the nt database using SLAM,
compared to NFS and PVFS-based.

To test scalability we collected results of aggregated read
bandwidth for an increasing number of nodes as illustrated
in Figure 3. The bandwidth is based on the total read time
and overall amount of data processing. We find SLAM to
be a scalable system, since the read bandwidth greatly in-
creases as the number of nodes increase. However, the NFS
and PVFS based BLAST schemes have a considerably lower
overall bandwidth, and as the number of nodes increases,
they do not achieve the same bandwidth increase. This in-
dicates a large data movement overhead exists in NFS and
PVEFES over the network that bars them from being efficiently
scalable.

When running parallel BLAST on a 108-node configura-
tion system, we found the total program execution time with
NFS, PVFS and SLAM based BLAST to be 589.4, 379.7 and
240.1 seconds, respectively. We calculate the performance
gain as Equation 1, where Tsr,aM-based denotes the overal-
1 execution time of parallel BLAST based on SLAM and
TNFS/PVFS-based 1S the overall execution time of mpiBLAST
based on NFS or PVFS.

improvement =1 — M. (1)
TNFS/PVFS-based

As seen from Figure 4, we conclude that SLAM-based BLAST
could reduce overall execution latency by 15% to 30% for
small-sized clusters with less than 32 nodes as compared
to NFS-based BLAST. Given an increasing cluster size, S-
LAM reduces overall execution time by a greater percentage,
reaching 60% for a 108-node cluster setting. This indicates
that NFS-based setting is not scaling well. In comparison
to PVFS-based BLAST, SLAM runs consistently faster by
about 40% for all cluster settings.

3.3 Evaluating ParaView with SLAM

To test the performance of ParaView with SLAM, Par-
aView [3.14] was installed on all nodes in the cluster. To
enable off-screen rendering, ParaView made use of Mesa 3D
graphics library version [7.7.1]. The DC-scheduler is imple-
mented with VTK MultiBlock datasets reader for data task
assignment. A multi-block dataset is a series of sub datasets,
together they represent an assembly of parts or a collection
of meshes.

For our test data we use the Macromolecular datasets that
was obtained from a Protein Data Bank containing a repos-
itory of atomic coordinates, information describing protein-
s and biological macromolecules. The processed output of

[PVFS-based

HDFS-based (w/o DC-scheduler)

SLAM-based

Total Time(seconds)
=
G
o

16 32 64 96
of nodes

Figure 5: Execution time of PVFS, HDFS and S-
LAM based ParaView.

these protein datasets are polygonal images, and ParaView
is used to process and display such structures. In our test,
we take each dataset as a time step and convert it to a subset
of ParaView’s MultiBlock file with extension “.vtu”. Due to
the need to download multiple datasets to the test system,
we duplicate some datasets with a little revision and save
them as new datasets in “binary” mode. For each rendering
96 subsets from 960 datasets were selected. As a result, our
test set was approximately 40 GB in total size and 3.8 G-
B per rendering step. We use a python script to setup the
visualization environment and needed filters to create a re-
producible test. The script was submitted to the ParaView
server via the provided pvbatch utility to produce a test run
on a given node count.

Figure 5 illustrates the overall execution time of a Par-
aView analysis for an increasing number of nodes with the
use of PVFS, HDFS and SLAM. With a small cluster size,
the total time of the ParaView experiment did not greatly
differ because the available network bandwidth is sufficient
to deliver the data needed by the computational processes
and there is no network contention. At 64 nodes however,
the SLAM based ParaView shows it’s strength in large clus-
ters seeing a major reduction in total time when compared
with the PVFS and HDFS based ParaView, being nearly
100 seconds quicker in execution for a total execution time
of 110 seconds. In a 96 node cluster, the difference between
SLAM and the other filesystems is lessened, but still a great
improvement is observed with SLAM based ParaView exe-
cuting in 70 seconds, a reduction almost twice over PVFS
and HDFS based ParaView.

4. RELATED WORK

The data locality [7] or in-situ computation is a desirable
technique to improve I/O performance. VisIO [6] obtains a
linear scalability of I/O bandwidth for ultra-scale visualiza-
tion but requires hard coding effort to rewrite the ParaView
read methods. Janine et. al. [2] develop a platform which re-
alizes efficient data movement between in-situ and in-transit
computations that perform on large-scale scientific simula-
tions. The Hadoop Distributed File System (HDFS) is an
open source community response to the Google File System
(GFS), specifically for the use of MapReduce style work-
loads [3]. Dryad and Spark are two other frameworks to
support data locality computation. The idea behind these
frameworks is that it is faster and more efficient to send the
compute executables to the stored data and process in-situ
rather than to pull the data needed from storage. Different

from these approaches, our SLAM uses an I/O middleware
to allow existing MPI-based parallel applications to achieve
scalable data access with an underlying distributed file sys-
tem.

5. CONCLUSIONS

In this paper, we developed a scalable locality-aware mid-
dleware to dramatically improve the I/O performance of
scientific analysis applications. A SLAM-I/O layer is im-
plemented to allow traditional MPI or POSIX based ap-
plications to run using Hadoop distributed file system. To
exploit data-task locality computation, we proposed a nov-
el data-centric load-balancing scheduler. The scheduler is
independent of specific applications and could be adopted
for other MPI-based programs that benefit from some for-
m of data locality computation. By conducting experiments
over two real scientific application, we found that SLAM can
greatly reduce the I/O cost and double the overall execution
performance as compared with existing schemes.

6. ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation Grant CNS-1115665, CCF-1337244 and Nation-
al Science Foundation Early Career Award 0953946.

This work is conducted at a PRODE staging cluster-128-
node Marmot cluster, which is supported in part by the Na-
tional Science Foundation under awards CNS-1042537 and
CNS-1042543 (PRODE).

7. REFERENCES
[1] J. Ahrens, B. Geveci, and C. Law. Paraview: An

end-user tool for large data visualization. The
Visualization Handbook, 717:731, 2005.

[2] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout,

A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar,
V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang,
and J. Chen. Combining in-situ and in-transit
processing to enable extreme-scale scientific analysis. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 49:1-49:9, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the
ACM, 51(1):107-113, 2008.

[4] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
Probe: A thousand-node experimental cluster for
computer systems research. volume 38, June 2013.

[5] H. Lin, X. Ma, W. Feng, and N. F. Samatova.
Coordinating computation and i/o in massively parallel
sequence search. IEEE Trans. Parallel Distrib. Syst.,
22(4):529-543, Apr. 2011.

[6] C. Mitchell, J. Ahrens, and J. Wang. Visio: Enabling
interactive visualization of ultra-scale, time series data
via high-bandwidth distributed i/o systems. In IPDPS,
2011 IEEFE International, pages 68-79, May.

[7] S. Sehrish, G. Mackey, J. Wang, and J. Bent. Mrap: A
novel mapreduce-based framework to support hpc
analytics applications with access patterns. In
Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, HPDC
’10, pages 107-118, New York, NY, USA, 2010. ACM.

